expr

韦达定理公式(韦达定理公式大全)

一元二次方程,根与系数的关系,也就是常说的韦达定理。两根之和:x?+x?=-b÷a.两根之积:x?x?=c÷a.

我们利用根与系数的关系,一般可以解决一下几个类型的问题:

已知一元二次方程的一个根,求另一个根及字母系数的值;已知含根的的代数式的值,求方程的字母系数;已知两根,求一元二次方程等。

韦达定理公式(韦达定理公式大全)

上面这个图里,是一元二次方程,根与系数的关系的两个基本形式,和四个常见的变形。

一定要熟知,和理解透彻,这6个关系式,融汇贯通,考试中根据题意,要灵活运用。

题型一、利用根与系数的关系,求代数式的值。

这是一元二次方程,根与系数的关系,最基础最常见的,考试题型。仿照上面的6个关系式,平时多练习和理解,基本没有问题。

2题,先根据一元二次方程根与系数的关系,找到x?+x?和x?x?的值。

第二步,要求代数式变形,变成含有x?+x?和x?x?的代数,整体代入求值就好。

题型二、利用根与系数的关系,构造一元二次方程。

反其道而行之,曾经解过那么多方程,今天居然要你构造一个一元二次方程。请看上面的例题。

题型三、利用根与系数的关系,求字母的值。经典考试真题,常见考试题型。

方程有实数根,则△=b2-4ac≥0,即可求出m的值。

第2小题,根据韦达定理,分别找到x?+x?和x?x?,关键是这个满足的这个等式变形,要能够熟练理解,那么此题就没有难度。

题型四、利用根与系数的关系,确定字母系数的存在性。

这类题型,先依据根的判别式,求出k的取值范围。在利用根与系数的关系,代入要满足的等式。先假设成立,解得K值。再讨论,K是不是在这个取值范围内。

若在取值范围内,则存在。若正好不在这个范围内,则不存在。

温馨提示:本文内容由互联网用户自发贡献,该文观点仅代表作者本人,如有侵权,请联系删除!